Wilf-Equivalence on k-ary Words, Compositions, and Parking Functions

نویسندگان

  • Vít Jelínek
  • Toufik Mansour
چکیده

In this paper, we study pattern-avoidance in the set of words over the alphabet [k]. We say that a word w ∈ [k] contains a pattern τ ∈ [l], if w contains a subsequence order-isomorphic to τ . This notion generalizes pattern-avoidance in permutations. We determine all the Wilf-equivalence classes of word patterns of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Avoiding Patterns of Length Three in Compositions and Multiset Permutations

We find generating functions for the number of compositions avoiding a single pattern or a pair of patterns of length three on the alphabet {1, 2} and determine which of them are Wilf-equivalent on compositions. We also derive the number of permutations of a multiset which avoid these same patterns and determine the Wilf-equivalence of these patterns on permutations of multisets. 2000 Mathemati...

متن کامل

A Periodicity Theorem for Trees

In this paper we extend the notion of periodicity from words to labelled ordered trees. This is achieved by deening an equivalence relation on the support of the tree (the set of the nodes) and by requiring that equivalent nodes have the same label. Another requirement is that corresponding sons of equivalent nodes are equivalent too. Since the support of a k-ary tree may be described by a pree...

متن کامل

The Distribution of Run Lengths in Integer Compositions

We find explicitly the generating function for the number of compositions of n that avoid all words on a given list of forbidden subwords, in the case where the forbidden words are pairwise letter-disjoint. From this we get the gf for compositions of n with no k consecutive parts equal, as well as the number with m parts and no consecutive k parts being equal, which generalizes corresponding re...

متن کامل

On the Rearrangement Conjecture for Generalized Factor Order Over P

The Rearrangement Conjecture states that if two words over P are Wilf-equivalent in the factor order on P∗ then they are rearrangements of each other. We introduce the notion of strong Wilf-equivalence and prove that if two words over P are strongly Wilf-equivalent then they are rearrangements of each other. We further conjecture that Wilf-equivalence implies strong Wilf-equivalence. Résumé. La...

متن کامل

The distribution of longest run lengths in integer compositions

We find the generating function for C(n, k, r), the number of compositions of n into k positive parts all of whose runs (contiguous blocks of constant parts) have lengths less than r, using recent generalizations of the method of Guibas and Odlyzko for finding the number of words that avoid a given list of subwords.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2009